

Intent: Albert Einstein said, "The important thing is not to stop questioning; curiosity has its own reason for existing." Through our teaching and learning of Science, children develop a sense of excitement and curiosity about natural phenomena and whilst there are often answers in Science, this knowledge is only as good as the latest, accepted theory and so children are encouraged to question evidence and discoveries from the scientific greats of the past and present.

During learning, the knowledge, methods, processes and uses of Science are taught and learnt in a variety of contexts. We apply constructivist theory to many areas of our Curriculum and especially Science, acknowledging that children are not 'empty vessels' that come to school to be 'filled' with 'real, correct Science.' Children question and often lead the line of scientific enquiry. Ultimately, learning is an active, not passive process, and teachers facilitate this learning, helping children to deepen their scientific understanding.

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Content Knowledge	Plants	Living things and their	Plants	Living things and their	Living things and their	Living things and their
(refer to NC)	Animals incl. humans	habitats	Animals incl. humans	habitats	habitats	habitats
	Everyday materials	Plants	Rocks	Animals incl. humans	Animals incl. humans	Animals incl. humans
	Seasonal changes	Animals incl. humans	Light	States of Matter	Properties and changes in	Evolution and inheritance
		Everyday materials	Forces and magnets	Sound	materials	Light
				Electricity	Earth and Space	Electricity
					Forces	
Scientists and	Plants: Beatrix Potter	Living things and their	Plants: Joseph Dalton	Living things and their	Living things and their	Living things and their
Inspirational People	Animals incl humans: Chris	habitats: Steve Backshall, Liz	Hooker	habitats: Carl Linnaeus,	habitats: Jaques Cousteau,	habitats: Carl Linnaeus
	Packham and Helen Adams	Bonnin	Animals incl. humans:	David Attenborough,	Dame Jane Morris Goodall,	Animals incl. humans:
	Keller	Plants: Agnes Arber, Alan	Adelle Davis, Marie Curie,	President Teddy Roosevelt	James Brodie of Brodie	Justus von Liebig, Sir Richard
	Everyday materials:	Titchmarsh	Mae C. Jemison	Animals incl. humans: Ivan	Animals incl. humans:	Doll, Leonardo Da Vinci
	Williams Addis, Charles	Animals incl. humans: Steve	Rocks: Mary Anning, Inge	Pavlov, Alexander Fleming	Marian Merian, Eva crane,	Evolution and inheritance:
	Mackintosh	Irwin, Robert Winston, Joe	Lehmann	States of Matter: Robert	John Tyler Bonner	Mary Anning, Charles
	Seasonal Changes: Dr Steve	Wicks	Light: Hasan Lbn al-	Boyle, Dmitri Mendeleev,	Properties and changes in	Darwin and Alfred Wallace
	Lyons, Holly Green	Everyday materials: John	Haytham, William Herschel,	Anders Celsius, Daniel	materials: Spencer Silver,	Light: Thomas Young, Percy
		MacAdam, John Dunlop	Isaac Newton	Fahrenheit, Svante	Ruth Benerito	Shaw, James Clerk Maxwell
			Forces and magnets:	Arrhenius	Earth and Space: Galileo	Electricity: Alessandro Volta,
			Williams Gilbert, Andre	Sound: Aristotle, Galileo	Galilei, Stephen Hawkins,	Nicola Tesla
			Marie Ampere, Leo	Galilei, Alexander Graham	Brian Cox	
			Theremin	Bell	Forces: The Ancient Greeks,	
				Electricity: Thomas Edison,	Aristotle, Foucault, Galileo,	
				Joseph Swan	Isaac Newton, Albert	
					Einstein, Otto Von Guericke,	
					John Kemp Starley	

Featherstone Primary School: Progression and Sequencing within Science

Planning stage	Planning a scientific investigation	With support, identify whole-class questions that can be tested Perform simple tests	Identify questions that can be tested with growing independence Identify what needs to be measured so the question can be answered Understand that questions can be answered in a variety of ways	Independent (the variable(s) t the amount of water a plant re plant growth) Controlled (the variable(s) tha type of battery in a circuit exp Dependent (the variable being taken, height reached, power s Choose a question to answer in	ent (the variable(s) that are altered, i.e. changing nt of water a plant receives in an experiment about wth)and cont Suggest a enquiryd (the variable(s) that are kept the same, i.e. the attery in a circuit experiment)Suggest a suggest a Suggest a Suggest a Suggest a Suggest a Suggest a Suggest a Make and Suggest a		entify and list multiple variables: independent, dependent d controlled ggest and refine a question to answer in a scientific quiry ggest a method and equipment ake and fully justify predictions ggest risks and safety advice	
Scientific methods used to answer questions	Observations in a range of scientific contexts	Observe closely the changes over time, noticing the patterns and relationships		With teacher support and guidance, make systematic and careful observations and understand why scientists need to do this	Make systematic and careful observations (i.e. knowing to observe the phenomena every five minutes precisely) Teaching may i observations o appropriate to knowledge and		No new observation over time experiments/ expectations in Year Six. Teaching may include observations over time if appropriate to the content knowledge and/or to ensure that learning is not lost.	
	Identifying, classifying and grouping in a range of scientific contexts	Name materials Sort and group	Make and explain comparisons	Identify differences, similaritie content knowledge and/or scie		No new identifying, classifying and grouping experiments/expectations in Years Five to Six. Teaching ma include identifying, classifying and grouping if appropriate the content knowledge and/or to ensure that learning is no lost.		
	Fair testing in a range of scientific contexts	Scientific method of fair testing not taught in Key Stage One		During the fair test experimen conducted to the level of fairn Can talk about why a test is or is not fair in general terms		 ariable(s) identified during the planning stage so that the test i Can talk about why a test is or is not fair, linking this understanding to: the variables (i.e. a control variable was missed and/or an accidental independent variable) and/or the process of the experiment (i.e. alterations made during an enquiry; not enough data collected) 		
	Pattern seeking in a range of scientific contexts	Scientific method of pattern s	eeking not taught in Years One –	Three	Identify patterns Identify anomalies	Identify patterns and why it occurred Identify and explain anomalies	Use patterns and anomalies to refute or prove ideas	

Featherstone Primary School: Progression and Sequencing within Science

nalysis	Working with data to take measurements (incl. apparatus)	Use senses and simple equipment to gather data	Use appropriate non- standard measurements (i.e. cubes) and a greater range of equipment to gather data	Take standard unit measurements (i.e. centimetres) using a range of scientific equipment, including thermometers and data loggers Show growing accuracy when taking measurements		Take accurate and more complex measurements using a range of scientific equipment Show accuracy when taking measurements Take repeated readings where needed and justify	Take accurate and more complex measurements using a range of scientific equipment Show accuracy when taking measurements Take repeated readings where needed and justify Know and explain when they have enough data/readings
Knowledge of data and analysis	Working with data to record and present	Record what happened with labelled diagrams Present data in templates provided	Construct simple pictograms, tally charts, block diagrams and simple tables to show results	Present scientific data with diagrams with labels and keys, tables and bar charts Simple scientific language accurately spelt used when recording		Present scientific data with accurate diagrams and labels, tables, bar and line graphs	Choose the most appropriate format to accurately present data, with increasing complexity, from: scientific diagrams and labels, classification keys, tables, bar and line graphs
	Working with data to explain and conclude	Discuss method and findings Use their observations and ideas to suggest answers to questions	Suggest ideas to scientific questions based on the data measured and recorded	Report and present findings fro Suggest answers to scientific questions based on the data measured and recorded Make a simple conclusion about what the test shows List another question that develops from the experiment	om enquiries, including: verbal a Suggest answers to scientific questions based on the data measured and recorded Compare conclusion to prediction List further questions that are raised by the experiment	Suggest answers to scientific questions based on the data measured and recorded Understand that there is not one scientific method to explore and phenomenon Think about a further test raised by the experiment	s and presentations. Suggest answers to scientific questions based on the data measured and recorded Understand that models and diagrams, whilst helpful, do have their limitations Set up a further test raised by the experiment
Evaluation stage	Evaluation of a scientific investigation	Identify one way that they have 'acted like a mini scientist' during the lesson (i.e. looked closely; listened carefully; drew accurately; labelled with correct spelling; used a scientific word)	State one good thing about an investigation and one improvement that could be made Basic justification	Identify methods that help to make scientific data valid Suggest improvements Give ideas about whether or not the scientific question has been answered	Explain what helps to make scientific data valid Understand how/why accuracy is important in collecting data (i.e. reduction in the chance of an anomaly)	Evaluate why or why not a test has been accurate or reliable by discussing what could be done differently/better, relating to the variables Discuss how trustworthy their results are	 Discuss the trustworthiness of results and prevent anomalies through: Justifying the choice of the equipment to support data collection Repeating observations Suggesting alternative investigations to yield similar results